From IMT-2020 to Network-2030

A.Borodin, SG3 and FG-Net-2030 vicechairman, "Rostelecom", A.Koucheryavy, SG11 chairman, SPbSUT/NIIR

Content

- 1. Super high dense networks.
- 2. D2D Network.
- 3. Ultra low latency networks.
- 4. Network clustering and decentralization.
- 5. Network-2030 vision.
- 6. Avatar communication.
- 7. Nano-networks.
- 8. Conclusions.

Specific features of IMT-2020 Networks

Super High Dense Ultra low Latency

Super High Dense Networks

- Up to 1 mln devices per 1 square km
- D2D communications
- WiFi Direct

Super High Dense Networks (2)

Super High Dense Networks (3)

$$P_{I} = \frac{3.8}{\rho^{0.3}} \lg(d) - 6.8 \lg(\rho) - 53.1$$

Super High Dense Networks (4)

The minimum path

The bandwidth maximum

D2D Network

- The D2D communications in the super high dense conditions establish a D2D network.
- In determining the interference, traffic that is generated in super dense networks in the route sections must be taken into account.
- The route of the shortest length can no longer be considered optimal.
- The development of new protocols for super dense networks using technologies D2D is required.

Ultra Low Latency

 $T = R \times \tau + \Theta,$

- R distance,
- τ latency due to light speed limitation (5 microsecond per km, Y.1541),
- Θ latency due to network processing.

Ultra Low Latency (2)

Round Trip Latency, R=50km Satellite communication - ? Tethered platforms or tethered UAV's The network clustering is needed.

Clustering (Leningrad region)

Clustering (Moscow region)

Clustering (Perm region)

Network with ultra low latency

- The network will be decentralized together with implementation of technologies with ultra low latency
- This will be the basis for the subsequent implementation of the Network-2030

Network-2030 vision

Беспилотный автотранспорт

Медицинские сети

Промышленные гуманоиды

Тактильный Интернет

Сеть связи с ультра малыми / задержками 2030

Наносети

Дополненная реальность

Летающие сети

Индустрия 4.0

Robots avatars

Кластер аватаров

Avatar communications

Human-to-Avatar (H2A) Avatar-to-Human (A2H) Avatar-to-Avatar (A2A).

Nano networks

Molecular nano networks

The human body,

food (nm – mcm)

Average distance

(mcm – mm)

Hundreds m and km

 Ca^{2+}

bacteria pheromones

Micro spectrometer application

Analysis screen (micro spectrometer SCiO was using)

	NECTARINES AND PEACHES SCAN RESULTS	FRUIT AND VEGETABLES SCAN RESULTS								
70% COCOA	or AVERAGE GOOD STCRILLING OR BRIX STCRILLING 121	17% CARBS								
100 Grams 💌	WHERE ADD BOUGHT ONOTE									
Carbs 48g	Last Scans Highest Brix	100 Grams •								
L , sugars 29g	• 12° Brix 23:08 PM	Carbs 17g 6% of Daily Value								
Fat 40g	• 10° Brix Aug 12	Calories 70 4% of Daily Value								
Calories 585Kcal	• 21° Brix Aug 12	Water 82g								
DELETE SCAN ANOTHER	DELETE SCAN ANOTHER	DELETE SCAN ANOTHER								

Traffic analysis

												btsr	noo	p_hci.lo	g						-		×	
File	Edit	View	Go	Capt	ure	Analy	ze	Statisti	cs 1	Telephony	Wirele	ss	Тоо	ls Help										
		۱)			C	۹ 🤃	-	23	<u> </u>		€. €			Ē.										
	pply a d	isplay filt	er <(Ctrl-/>															2		Expre	ssion	. •	+
No.	Time		Source	2	1	Destina	tion			Protocol	Length	In	fo											^
4	42 20.	361949	cont	rolle	er	host				HCI_EV	г	7 R	cvd	Command	Comp	lete	e (LE	Clea	ar Wh	nite	List))	_	
	43 20.	362072	host			contr	olle	r		HCI_CM	0	9 Se	ent	Vendor	Comma	and 0	x001	7 (oj	pcode	e ØxF	C17)		_	
	44 20.	363323	cont	rolle	er	host				HCI_EV	г	8 R.	cvd	Command	Comp	lete	e (Ve	ndor	Com	nand	0x001	17	_	
- 4	45 20.	363446	remo	te ())	local	host	: (Redr	ni)	L2CAP	48	8 R	cvd										_	
4	46 20.	363560	remo	te ())	local	host	: (Redr	ni)	L2CAP	48	2 Ro	cvd											
4	47 20.	363622	remo	te ())	local	host	(Redr	ni)	L2CAP	27	5 R.	cvd											
4	48 20.	562390	host			contr	olle	r		HCI_CM	0	4 Se	ent	Reset										\sim
<																						>		
 Bluetooth HCI H4 Bluetooth HCI ACL Packet Bluetooth L2CAP Protocol Length: 479 CID: Reserved (0x000d) Payload: 1500000010058420067d3014304a64324af43d8af860d03 																								
000	0 02	dc 2e	e3 01	df	01 0	od 00	15	00 00	00	01 00 58	2.0			x										^
001	0 03	95 23	43 00	. 45 b0	86 9	nd 03	24	23 43	00	b0 86 0d	0.B			₽.C σ#C										
003	0 03	67 23	43 28	60	86 6	od 03	3 67	23 43	28	b0 86 0e	· g#0	· · ·		в"~ g#C(•••										
004	0 04	67 23	43 40	: b0	86 6	e 04	1 67	23 43	70	b0 43 bc	• g#0	ΞÈ••		g#Cp·C·										
005	0 b1	43 80	b2 86	36	04 9	5 13	3 43	c0 b3	43	88 be 43	·c·	• 6 •	(c··c··c										
006	0 d0	bf 43	d4 bf	86	0d 6	93 3ł	23	43 d4	bf	86 Ød Ø3	• • c		· 3	#C••••										
007	0 02	23 43	fc bf	86	0d 0	3 87	23	43 fc	bf	86 0d 03	•#C			#C····										
008	0 67	23 43	24 60	86	0e 0	94 67 M C	23	43 48	C0	86 0e 04	g#C		g	#CH••••										
003	0 86	38 04	08 63	43	a0_c	1 4	3 d8	cd 43	04	ce 86 36	- 8 -													5
0	У ь	tsnoop_h	ci.log											Pa	ckets:	49 • Di	isplaye	d: 49	(100.0)%)	Profile	e: Defa	ault	

1-2 Mbytes per one spectrogram

Conclusions

1. The route of the shortest length can no longer be considered optimal. The development of new protocols for super dense networks using technologies D2D is required.

2. The network will be decentralized together with implementation of technologies with ultra low latency.

3. There will be many new communications in the networks of 2030, including communications Human-to-Avatar (H2A), Avatar-to-Human (A2H), Avatar-to-Avatar (A2A).

Conclusions (2)

4. It is necessary to take into account in the investigation on networks 2030 the potential of traffic generated by nano networks.